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Abstract

Often in mathematical modeling, it is necessary to estimate nu-
merical values for parameters occurring in a system of ordinary dif-
ferential equations from experimental measurements of the solution
trajectories. We will discuss some of the difficulties involved in the
solution of this problem, and we will describe a new parallel quasi-
Newton algorithm for finding values of the parameters so that the
numerical solution of the state equation best fits the observed data in
the weighted least squares sense.






1 Introduction

The ability to numerically estimate parameters that appear in differential
equation models of dynamic processes is crucial to the research effort in a
variety of experimental science and engineering areas. Consider, for example,
the process of modeling in chemical kinetics. One of the important goals in
this field is to determine which elementary reactions constitute the mecha-
nism of a complex reaction. First, a model consisting of a system of elemen-
tary chemical reactions is formulated to describe the proposed mechanism of
the complex reaction system. The proposed chemical model determines the
dependence of the reaction rate on the concentrations of the reactants and
products. In this way, the chemical model is converted into a mathematical
model in the form of a system of rate laws. This mathematical model then
consists of a system of ordinary differential equations which describes the
rate of change of the concentrations of the individual chemical species over
time. In this model are parameters known as rate constants which relate the
concentrations of the species to the rate of the reaction. Then, given some
experimental measurements of the concentrations of the species at various
times, we would like estimates of the rate constants. The proposed reac-
tion mechanism can be evaluated by considering how well the solution of
the dynamical system with the final estimates of the rate constants fits the
experimental measurements.
For example, the following chemical reaction system:;

IrClZ= + NO = IrCIZ 4+ HNO;+ H*
2NO, = NO; + HNO, + H*
9HNO, = NO + NO,,

with rate constants ki, ko, ks, k4, ks, and kg, has been under investigation by
Ram and Stanbury [13]. The model for this reaction mechanism is a fifth-
order system of ordinary differential equations. Given some measurements
of the absorbance of IrCIZ~ at various sample times, the objective is to
estimate values for the rate constants of the reactions, i.e. ki,..., ks. Then,
the proposed reaction mechanism can be evaluated by considering how well
the integrated solution of the model with the final value of the parameter
vector fits the data.

Important problems of this type arise in diverse areas of science and en-
gineering. In addition to chemical kinetics, other examples of parameter
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estimation problems can be found in biology, biochemistry, and robotics. In
this paper we will describe some standard approaches to the solution of the
parameter identification problem in systems of ordinary differential equa-
tions. Then, we will describe a new algorithm that is based on the Celis,
Dennis, and Tapia trust region algorithm [7], [8] for equality constrained op-
timization problems. This new algorithm should be both more efficient and
more stable than standard solution techniques, and it also provides a flexi-

ble framework for introducing parallelism into the parameter identification
problem.

2 Problem Formulation

In order to discuss the new algorithm, we will first establish some nota-
tion. Let IR" denote the real n-dimensional Euclidean space. Let p =
(p1, P2, - - ,pr)T € IR™ be the vector of parameters to be estimated, y =
(y1,Y2, - - .,yNy)T € IR be a state vector, and ¢ € IR be the independent
variable, usually interpreted as time. We assume that the system we are
studying is modeled by a parameterized first-order system of ordinary differ-
ential equations

d

d—z = F(t,y;p); with initial conditions y(to) = yo, (1)
where F : IR x IR™ x IR"» — IR™' satisfies some continuity conditions. Let
y(t;p) € IR™Y denote the solution of (1) at time ¢ with the parameter vector

p, and let y;(¢; p) denote its i-th component. Then, given a set of data points
(tdata;;,ydata;;); ¢ =1,...,Ny; 5 =0,...,Na(2), (2)

where ydata;; is an approximation to y;(tdata;;;p.) for some unknown pa-
rameter vector p, , the parameter identification problem is to determine an
estimate of p, , such that the solution of (1) with this parameter vector “best
fits” the given data. In this work, we will consider “best fit” to mean that
p,. minimizes the sum of the squares of the deviations between the numerical
solution of (1) and the data points, ydata,;,
solves the following optimization problem:

at the time points tdata;;; 1.e. p.

Ny Ng(1)
minimize f(p Z >~ (yi(tdatay;; p) — ydata;;)?. (3)

11]_0
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Notice that we have included the components corresponding to initial values
at to in the objective function, and we have included initial values, y(%o),
in the statement of the model, given in (1). Ideally, we would have exact
initial values for all of the components of y in the form of the data points
corresponding to g, and thus,

yi(to) = ydata,y; 1 =1,...,N,.

However, it is clear that there will be cases in which some or all of the initial
values are known only approximately. In these situations, some or all of
the components of y(to) should be treated as parameters. We use a vector,
ivpar € IR, to keep track of which components of the initial values are
being included as parameters, i.e.:

par. — 0 if y;(to) is not included as a parameter ()
par; = 1 if y;(to) is included as a parameter,

and let N;, = 2?2'1 ivpar; denote the number of initial values that are included
as parameters. The dimension of the parameter vector, still denoted by N,
now includes both the number of parameters contained in F'(¢,y; p) and the
number of initial values that are included as parameters. Therefore, we will

use
' _ ] ydatay if ivpar, =0
vilto) = { PNp~Niy+i if ivpar;, = 1 5)
as the initial conditions for the initial value problem given in (1). We will
define the residual vector, R(p) = (Ri, Ra,-..,Rng)T € H%Nf*, such that
fori=1,...,N,, j=1,...,N4(i) +ivpar, , and k = j + i 2, Na(m) +
ivpar,, ,

Ri(p) = yi(tdata,;; p) — ydata,; , (6)
and the dimension of the residual is given by
Ny
Nr = Ny + > Nu(3).
i=1

Thus, the objective function f(p) given by (3) is equivalent to
1 1
f(p) = 5R(p)" R(p) = SlIRD)I, (7)
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and it has the special structure of the nonlinear least squares objective func-
tion. We should point out that in some problems there is motivation to use
a weighted least squares objective function, but for simplicity, we will not
include the weighting factors in this discussion.

At this point, some remarks about the form we have assumed for the
problem are appropriate. We have chosen this complex structure for the
data set because its flexibility allows us to consider some real applications
that would otherwise be excluded. The general data structure given in (2)
allows us to include cases in which no data points are available for some of the
components of y and cases in which the data points for different components
of y do not occur at the same time points. To accomplish this, N4(¢) denotes
the number of data points available for the i-th component of the solution
vector and tdata;; denotes the time corresponding to the jth data point of
the i-th component of y, i.e. ydata,..

In addition, we have assumed that the model is a first-order normal sys-
tem of differential equations. Since any general n-th order differential equa-
tion which is resolved with respect to the n-th derivative can be transformed
into an equivalent first-order system, this assumption is not restrictive.

3 Initial Value Approaches

The most straightforward approach to solving (3) is to use a quasi-Newton
method from unconstrained optimization for the minimization and an initial
value method for the required numerical integration. In order to fully exploit
the structure of the problem, we can use a nonlinear least squares algorithm
such as an augmented Gauss-Newton trust region method [10] to minimize
the objective function (7). Let J(p) € IRV?*» denote the Jacobian matrix,
i. e. the first derivative matrix of R(p), where J(p);; = 6—};;;(;’32. Then, the first

derivative of f(p) = 3R(p)T R(p) is

Ng
Vi) =3 Rip) - VRi(p) = J ()" R(p).

Similarly, the second derivative of f(p) is

V() = SAVR(p) VR + Ri(p) - V?Ri(p))

=1



Vif(p) = J(@'JI(p)+S(p)
Ngr
where S(p) = Z: Ri(p) - V*Ri(p)

is the second-order information in the Hessian of f(p). Then, at each itera-
tion, a step s is chosen to solve the following trust region subproblem:

minimize m.(p. + 3) = %R(PC)TR(Pc) + (J(pc)T R(p.))"'s

+ 8T (J(pe)T I (pe) + S(pe))s
subject to ||s]l2 < 4.,

where m, is the local quadratic model of f at the current parameter vector
p.. The trust region radius é. provides a region in which we can “trust” the
local model m..

At each iteration we must solve the initial value problem (1) in order
to compute R(p.). We can use finite differences to compute the required
Jacobian of R, or we can use the sensitivity equations. In the sensitivity
equations approach, the following system of equations:

d 8yi BF,' Ny 6F1~ 6yk . .
— — + --—, :1,,N, :1,...,N
dt(apj) Ip; kz=:1 e Op;’ v ’

with appropriate initial conditions is numerically integrated to obtain an
approximation to the Jacobian. Notice that this approach requires the si-
multaneous integration of the initial value problem (1), and it requires an-
alytical expressions for the derivatives % and %E. Finally, we use a secant
approximation to the second-order portion of the Hessian [10].

Numerical testing indicates that these nonlinear least squares algorithms
with the Jacobian calculated using finite differences or using the sensitivity
equations work well on a wide variety of test problems. However, these
algorithms have room for improvement in two major areas. Our experience
indicates that a good initial guess for the parameter vector is important,
but not because of the optimization method. When the initial guess is far
from the solution, the difficulty is that the algorithm may reach a parameter
vector for which the resulting initial value problem is unstable and where the
residual can not be calculated.

In addition, the calculation of the residual and of the columns of the Ja-
cobian are computationally intensive. In fact, experience indicates that typ-
ically ninety percent or more of the cpu time is spent on these calculations.
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One way to handle this difficulty is through the use of parallel computing
to exploit the independence of the calculation of the residual and each of
the columns of the Jacobian. This parallelism occurs very naturally in the
finite difference nonlinear least squares method. Similarly, in the sensitivity
equations approach, each column of the Jacobian requires the numerical in-
tegration of an independent block of equations. However, the parallelism in
this method is complicated by the fact that ¢y’ = F(t,y; p) must be integrated
along with each block of equations in order to evaluate the partial derivative
matrices. In addition, further speed-up will be obtained by exploiting the
parallelism in the linear algebra needed for the calculation of the optimization

step, [5], [9].

4 Nonlinear Programming Approaches

In order to improve the stability and efficiency of our algorithms, we want to
investigate techniques for calculating the residual based on boundary value
methods [11}, [14]. Specifically, we are considering a multiple shooting tech-
nique in place of the initial value methods for the numerical integration of the
system given in (1). Multiple shooting can be considered a form of domain de-
composition for ordinary differential equations. Thus, in addition to adding
stability, multiple shooting provides a technique for introducing additional
parallelism into the parameter identification problem. Furthermore, multiple
shooting leads to a constrained formulation of the optimization problem that
will allow us to use methods which we believe will be more efficient than the
initial value approaches presented in the previous section.

Let t; = max{tdata;;; ¢ = 1,...,N,;5 = 0,...,Ng(¢)}. In the multiple
shooting method, shooting parameters, zx(p) € IR™*; k = 1,...,M, are
introduced into the problem at time points Ty; k = 1,..., M, satisfying

lo<Ti <To <Ts... Ty <ty.
The shooting parameters, zx; k = 1,..., M; represent the solution of the
initial value problem (1) at the times Ty;k = 1,..., M. Let y(t, p; Tk, k)

denote the solution of

y' = F(t,y;p); with initial values y(T%; p) = 2 (8)



on the interval [Tk, Tk+1]. Then, the problem consists of determining the
vectors z; £ =1,..., M; in such a way that the function

y(t,p;to,y(to)) for t € [to,T1)
y(t;p) =4 y(t,p;Th,2zx) for t € [Th,Topr); k=1,...,M —1
y(t,p; T, zn) for t € [T, ty)

is continuous over the entire interval, and thus a solution of the initial value
problem (1). This yields continuity conditions at each Ty; k=1,..., M for
the unknowns zx; £ = 1,..., M. These conditions constitute a nonlinear
system of equations of dimension M - N, of the form:

y(T1, p; to, y(to)) — 21

y(T2,p; Ty, 21) — 22

h(p,2) = =0 9)

Y(Tat, p; Tvi-1, 2M-1) — 2M

Thus, the numerical integration of the system of differential equations (1)
now requires the solution of the nonlinear system given by (9).

The most obvious way to add the stability of the multiple shooting ap-
proach to the algorithms described in the previous section is to calculate
the residual using this multiple shooting technique instead of an initial value
method. Unfortunately, each residual calculation now has the additional ex-
pense of the iterative solution of the nonlinear system of equations (9). Even
though we could use a structured variation of Broyden’s method to calcu-
late the Jacobian of h at each step of the iterative solution of this nonlinear
system of equations, we must numerically integrate each of the initial value
problems of the form (8) in order to evaluate h(pc, z(p.)). Therefore, it is
clear that merely substituting multiple shooting for the initial value meth-
ods in the algorithms discussed in Section 3 will lead to more stable, but
slower algorithms. However, we will now show that multiple shooting leads
to a different formulation of the optimization problem which will allow us to
develop a more efficient and stable algorithm.

Recall that we are interested in solving the following optimization prob-
lem:

minimize f(p) = ';‘R(P)TR(P),

and that calculating the residual for the current parameter vector using mul-
tiple shooting is equivalent to solving the nonlinear system, A(p., z(p;)) = 0.
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Following Bock, [1], [2], we consider instead the following constrained param-
eter identification problem:

Problem CPID:
1
minimize  f(p, 2) = S R(p,2)" B(p,2)
subject to  h(p,z) =0,
where p and z are regarded as independent variables. In this context, the
initial value approaches described in Section 3 can be considered as meth-
ods which require each parameter iterate to be feasible, i.e. y(t;p) solves
the initial value problem (1) at each iteration, by regarding z as dependent
on p. However, this constrained formulation will allow us to consider algo-
rithms designed for equality constrained optimization: algorithms which will
allow infeasible iterates. Nonlinear programming experience has shown that

algorithms which allow infeasible iterates are generally more efficient than
algorithms which require each iterate to be feasible.

4.1 SQP Formulation

One of the most popular methods for solving the equality constrained opti-
mization problem is the successive quadratic programming (SQP) method.

At each iteration, the SQP method solves a quadratic programming problem
of the form

Problem QP: (10)
1
minimize V£(p,z)Ts+ é-sTBs
subject to  h(p,z) + Vh(p,2)Ts =0

where B is an approximation to the Hessian of the Lagrangian [(p,z,\) for
the step sgp = (Ap, Az)T and the Lagrange multipliers A?F. The Lagrangian
function associated with Problem CPID is the function

I(p,z,A) = f(p,2) + \Th(p, 2) (11)

where A = (Aq, Ag, .. -,/\NP‘M)T are the Lagrange multipliers. We say that
the point (py,24)T = (pe, 2.)T + (Ap, A2)T is linearly feasible if it satisfies
the linearized constraint

h(pe, zc) + Vh(pc, zc)Ts =0

8



where s = (Ap, Az)T.

The fast local convergence properties of the SQP method have been fairly
well established, but the issue of a satisfactory globalization strategy still
remains open. A number of line search techniques have been proposed by
various authors, but none of them have proven to be particularly successful.
One of the reasons for this is that there is no natural descent function for
the constrained optimization problem due to the conflict between decreasing
the objective function and moving towards feasibility.

H. G. Bock and his coworkers have implemented a Han-Powell type SQP
method for the parameter identification problem in their code PARFIT [1],
[2], [3]. Unfortunately, they experience all of the difficulties that make SQP
implementations hard. Older implementations of SQP encounter difficulties
in handling rank degeneracy in the Jacobian of the constraints, lack of second-
order sufficiency in the QP subproblem, and the situation when the solution
to the QP subproblem is not a good descent direction for the standard merit
functions. We believe that our new algorithm will overcome these difficulties.

4.2 CDT Formulation

In this section we will discuss our new algorithm which is based on a trust
region globalization strategy for equality constrained optimization that has
been developed by Celis, Dennis, and Tapia, [7], [8]. The most obvious trust
region approach is to simply add a trust region constraint, i.e. a constraint
which limits the size of the step, to Problem QP. Unfortunately, the resulting
trust region subproblem may not have a solution since there may not be a
linearly feasible point inside the trust region. Therefore, we want to relax the
constraint h(p.,z.) + VA(pe,z.)Ts = 0 so that the trust region subproblem
has a solution without sacrificing convergence to a feasible point.

As motivation for how much linear feasibility we will require at each it-
eration, consider solving h(p,z) = 0 using an unconstrained trust region ap-
proach. At each iteration we would minimize a quadratic model of £||A(p, z)||3
subject to a trust region constraint on the length of the step, i. e. , ||s]|2 < é..
Let scp = —a.Vh(p., 2.)T h(p., z.) denote the step to the Cauchy point, i.e.,
the minimizer in the trust region {s : ||s|2 < 8.} of ||(pe, 2o) + VA(pe, 2.) T sl|2
along the direction of its negative gradient. If the algorithm took the step
to the Cauchy point scp on the model ||A(p., z.) + VA(pc, 2.)T s||3, then un-
der mild assumptions, first order convergence can be established, [6]. With



this motivation, Celis, Dennis, and Tapia consider the following trust region
subproblem:

Problem NDTR:
1
minimize V f(pe, ze) s + ESTBS
subject to  ||A(pe, 2e) + VA(pe, 2.)T s||2 < 0.

Isll < é.

where 0, is chosen to be ||A(pc, z.) + VA(pe, 2z.)T §||2 for some § that satisfies
3|l < é.. For example, 5 could be taken to be the step to the Cauchy point,
scp. Unfortunately, in the case where both of the quadratic constraints are
binding, Problem NDTR becomes difficult and expensive to solve.

Motivated by the work of Byrd, Schnabel and Shultz [4] on trust region
methods for unconstrained optimization, Celis, Dennis and Tapia [8] have
developed a more convenient trust region subproblem by restricting the trust
region subproblem to a two-dimensional subspace spanned by sgp and 3 as
follows:

Problem 2DTR:
1
minimize Vf(pe,z)Ts + §3TB3

subject to |~ (pe, 2c) + Vh(pc,zc)TSUz < 0.
lisllz < é

s € span{sgp, §}

where sgp is the solution to Problem QP. Numerical testing on standard
nonlinear programming problems indicates that this two-dimensional trust
region algorithm is generally more efficient than other SQP implementations.
Furthermore, we will be assured of global convergence, under reasonable
conditions, by the results given in the thesis of El-Alem [12].

Thus, our new algorithm retains the good stability properties of the mul-
tiple shooting approach, and in addition, we believe that it will prove to
be more efficient and economical than the algorithms based on initial value
methods. First, our new algorithm should be more efficient than the ini-
tial value approaches since it will allow infeasible iterates. The initial value
approaches require each iterate to be feasible. In addition, we expect our al-
gorithm to be more efficient than other SQP implementations because we do
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not require the iterates to be linearly feasible. This feature of the algorithm
also overcomes the difficulty when there is no linearly feasible point.

In addition to its stability and efficiency, our new algorithm provides a
technique for introducing additional parallelism into the solution of the pa-
rameter identification problem. This is due to the crucial observation that
the multiple shooting approach can be viewed as a powerful domain decom-
position technique for this problem. Furthermore, our new algorithm retains
the parallelism inherent in the initial value approaches since the residual and
the columns of the Jacobian of the residual are still independent calculations.
The Jacobian can be calculated using either finite differences or the sensi-
tivity equations, and the obvious parallelism in both of these methods has
been discussed previously. As a result of the multiple shooting approach,
the numerical integration needed for the computation of i(p, z) and the nec-
essary Jacobian matrices has been divided into many shorter, independent
numerical integrations on the subintervals [T}, T;41]-

Thus, this domain decomposition technique is a powerful tool that will
allow us to overcome several difficulties. First, we will choose the shooting
points, i.e. T;, that are necessary to obtain stability of the initial value prob-
lem. In addition, this multiple shooting approach provides us with a flexible
framework for load balancing, for we can now choose additional shooting
points to further divide the time interval into smaller intervals to make ef-
fective use of the number of processors that are available. Finally, this al-
gorithm also has opportunities for further speed-up within the trust region

subproblem since this subproblem can be divided into several independent
computations.

5 Conclusion

Through the use of multiple shooting, we have developed a new algorithm
for the parameter identification problem that promises to be more efficient
than the initial value approach and other SQP implementations. In addi-
tion, multiple shooting provides a domain decomposition technique which
allows us to judiciously introduce parallelism into this optimization problem.
Furthermore, this approach already puts us in the proper framework to treat
important practical side constraints on the parameter vector, both direct con-
straints, like p > 0, or more interesting state constraints like G(¢,y;p) > 0.
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This paper provides an overview of a new parallel optimization algorithm
for the solution of the parameter estimation problem in systems of ordinary
differential equations. Further details may be found in [15].

The authors wish to thank Richard Tapia and David Dobson for their
helpful comments.
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